
Outlines

Sublinear Approximate String Matching

Robert Z. West

Department of Informatics
Technische Universität München

Joint Advanced Student School 2004
Sankt Petersburg

Course 1: “Complexity Analysis of String Algorithms”

27th March 2004

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

This is where you are now.

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

This is where you are now.

This is where you will end up.

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

What is that delicacy we want to prepare?

Definition Given a text string T of length n and a pattern
string P of length m over a b-letter alphabet, the k-differences
approximate string matching problem asks for all locations in T
where P occurs with at most k differences (substitutions,
insertions, deletions).

Example TORTEL LINI
YELTSIN
* **

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

What is that delicacy we want to prepare?

Definition Given a text string T of length n and a pattern
string P of length m over a b-letter alphabet, the k-differences
approximate string matching problem asks for all locations in T
where P occurs with at most k differences (substitutions,
insertions, deletions).

Example TORTEL LINI
YELTSIN
* **

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

Why are we so hungry?

Genetics (e.g. GCACTT...) has conjured up new challenges in
the field of string processing.

Sequencing techniques are not perfect: experimental error up
to 5–10%.

Gene mutation (leading to polymorphism) is the mother of
evolution. Thus matching a piece of DNA against a database
of many individuals must allow a small but significant error.

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

Why are we so hungry?

Genetics (e.g. GCACTT...) has conjured up new challenges in
the field of string processing.

Sequencing techniques are not perfect: experimental error up
to 5–10%.

Gene mutation (leading to polymorphism) is the mother of
evolution. Thus matching a piece of DNA against a database
of many individuals must allow a small but significant error.

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

Why are we so hungry?

Genetics (e.g. GCACTT...) has conjured up new challenges in
the field of string processing.

Sequencing techniques are not perfect: experimental error up
to 5–10%.

Gene mutation (leading to polymorphism) is the mother of
evolution. Thus matching a piece of DNA against a database
of many individuals must allow a small but significant error.

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

How will we cook the meal?

We will

first gather the ingredients:
suffix trees, matching statistics, lowest common ancestor
retrieval, edit distance;

then merge the ingredients and form the algorithm:
linear expected time algorithm in detail, sublinear expected
time after some modifications.

Robert Z. West Sublinear Approximate String Matching

Outlines
What?
Why?
How?

How will we cook the meal?

We will

first gather the ingredients:
suffix trees, matching statistics, lowest common ancestor
retrieval, edit distance;

then merge the ingredients and form the algorithm:
linear expected time algorithm in detail, sublinear expected
time after some modifications.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Part I

Gathering the Ingredients

The Auxiliary Tools

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Suffix trees

Remember Olga: She told ya.

Suffix tree of P [1..m]$: SP

α branching word ←→ there are different letters x and y such
that both αx and αy are substrings of P$

root ←→ λ (empty string)

{internal nodes} ←→ {branching words}
{leaves} ←→ {suffixes}

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Suffix trees

Remember Olga: She told ya.

Suffix tree of P [1..m]$: SP

α branching word ←→ there are different letters x and y such
that both αx and αy are substrings of P$

root ←→ λ (empty string)

{internal nodes} ←→ {branching words}
{leaves} ←→ {suffixes}

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Suffix trees

Remember Olga: She told ya.

Suffix tree of P [1..m]$: SP

α branching word ←→ there are different letters x and y such
that both αx and αy are substrings of P$

root ←→ λ (empty string)

{internal nodes} ←→ {branching words}
{leaves} ←→ {suffixes}

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Suffix trees

Remember Olga: She told ya.

Suffix tree of P [1..m]$: SP

α branching word ←→ there are different letters x and y such
that both αx and αy are substrings of P$

root ←→ λ (empty string)

{internal nodes} ←→ {branching words}
{leaves} ←→ {suffixes}

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

floor(α) := “longest prefix of α that is a branching word”

ceil(α) :=
“shortest extension of α that is a branching word or a suffix”

Note: α branching word ←→ floor(α) = ceil(α) = α

β−1α := “α without its prefix β”

Label on edge (β, α): (x, l, r) such that
P$[l] = x; β−1α = P$[l..r]

son(β, x) := α

first(β, x) := l

len(β, x) := r − l + 1

shift(α) := “α without its first letter”, if α 6= λ (cf. suffix
links)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Matching statistics

Definition The matching statistics of text T [1..n] with respect
to pattern P [1..m] is an integer vector MT,P together with a
vector M′

T,P of pointers to the nodes of SP , where MT,P [i] = l if
l is the length of the longest substring of P$ (anywhere in P$)
matching exactly a prefix of T [i..n] and where M′

T,P [i] points to
ceil(T [i..i + l − 1]).
More shortly we will write M and M′.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

How do we compute the matching statistics?

Goal: O(n + m) time algorithm for computing the matching
statistics of T and P in a single left-to-right scan of T using
just SP

Brief description: The longest match starting at position 1 in
T is found by walking down the tree, matching one letter a
time.
Subsequent longest matches are found by following suffix links
and carefully going down the tree. (cf. Ukkonen’s
construction of the suffix tree: “skip-and-count trick”)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

How do we compute the matching statistics?

Goal: O(n + m) time algorithm for computing the matching
statistics of T and P in a single left-to-right scan of T using
just SP

Brief description: The longest match starting at position 1 in
T is found by walking down the tree, matching one letter a
time.
Subsequent longest matches are found by following suffix links
and carefully going down the tree. (cf. Ukkonen’s
construction of the suffix tree: “skip-and-count trick”)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

How do we compute the matching statistics?

Goal: O(n + m) time algorithm for computing the matching
statistics of T and P in a single left-to-right scan of T using
just SP

Brief description: The longest match starting at position 1 in
T is found by walking down the tree, matching one letter a
time.
Subsequent longest matches are found by following suffix links
and carefully going down the tree. (cf. Ukkonen’s
construction of the suffix tree: “skip-and-count trick”)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

i, j, k are indices into T :

The i-th iteration computes M[i] and M′[i].
Position k of T has just been scanned.
j is some position between i and k.

Invariants:

At all times true:
(1) T [i..k − 1] is a substring of P ; T [i..j − 1] is a branching
word of P .
After step 3.1 the following becomes true:
(2) T [i..j − 1] = floor(T [i..k − 1]) and corresponds to node α.
After step 3.2 the following becomes true as well:
(3) T [i..k] is not a word.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

i, j, k are indices into T :

The i-th iteration computes M[i] and M′[i].
Position k of T has just been scanned.
j is some position between i and k.

Invariants:

At all times true:
(1) T [i..k − 1] is a substring of P ; T [i..j − 1] is a branching
word of P .
After step 3.1 the following becomes true:
(2) T [i..j − 1] = floor(T [i..k − 1]) and corresponds to node α.
After step 3.2 the following becomes true as well:
(3) T [i..k] is not a word.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

i, j, k are indices into T :

The i-th iteration computes M[i] and M′[i].
Position k of T has just been scanned.
j is some position between i and k.

Invariants:

At all times true:
(1) T [i..k − 1] is a substring of P ; T [i..j − 1] is a branching
word of P .
After step 3.1 the following becomes true:
(2) T [i..j − 1] = floor(T [i..k − 1]) and corresponds to node α.
After step 3.2 the following becomes true as well:
(3) T [i..k] is not a word.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

i, j, k are indices into T :

The i-th iteration computes M[i] and M′[i].
Position k of T has just been scanned.
j is some position between i and k.

Invariants:

At all times true:
(1) T [i..k − 1] is a substring of P ; T [i..j − 1] is a branching
word of P .
After step 3.1 the following becomes true:
(2) T [i..j − 1] = floor(T [i..k − 1]) and corresponds to node α.
After step 3.2 the following becomes true as well:
(3) T [i..k] is not a word.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

If j < k after step 3.1, then T [i..k − 1] is not a branching
word (2), so neither is T [i− 1..k − 1].
So, as substrings of P they must have the same single-letter
extension.
We know from iteration i− 1 that T [i− 1..k − 1] is a
substring of P (1) but T [i− 1..k] is not (3), so T [k] cannot
be this letter. Hence the match cannot be extended.

Together invariants (1) and (3) imply M[i] = k − i.

i, j, k never decrease and are bounded by n: i + j + k ≤ 3n.
For every constant amount of work in step 3, at least one of i,
j, k is increased. The running time is therefore O(n) for
step 3, and of course O(m) for steps 1 and 2, yielding
together the desired O(n + m).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

If j < k after step 3.1, then T [i..k − 1] is not a branching
word (2), so neither is T [i− 1..k − 1].
So, as substrings of P they must have the same single-letter
extension.
We know from iteration i− 1 that T [i− 1..k − 1] is a
substring of P (1) but T [i− 1..k] is not (3), so T [k] cannot
be this letter. Hence the match cannot be extended.

Together invariants (1) and (3) imply M[i] = k − i.

i, j, k never decrease and are bounded by n: i + j + k ≤ 3n.
For every constant amount of work in step 3, at least one of i,
j, k is increased. The running time is therefore O(n) for
step 3, and of course O(m) for steps 1 and 2, yielding
together the desired O(n + m).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

If j < k after step 3.1, then T [i..k − 1] is not a branching
word (2), so neither is T [i− 1..k − 1].
So, as substrings of P they must have the same single-letter
extension.
We know from iteration i− 1 that T [i− 1..k − 1] is a
substring of P (1) but T [i− 1..k] is not (3), so T [k] cannot
be this letter. Hence the match cannot be extended.

Together invariants (1) and (3) imply M[i] = k − i.

i, j, k never decrease and are bounded by n: i + j + k ≤ 3n.
For every constant amount of work in step 3, at least one of i,
j, k is increased. The running time is therefore O(n) for
step 3, and of course O(m) for steps 1 and 2, yielding
together the desired O(n + m).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

1 construct SP in O(m) time
2 α := root; j := k := 1
3 for i := 1 to n do
3.1 while (j < k) ∧ (j + len(α, T [j]) ≤ k) do // “skip and count”

α := son(α, T [j]);
j := j + len(α, T [j])

elihw
3.2 if j = k then // extend the match

while son(α, T [j]) exists ∧ T [k] = P$[first(α, T [j]) + k − j] do
k := k + 1
if k = j + len(α, T [j]) then

α := son(α, T [j]);
j := k fi

elihw
fi

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

3.3 M[i] := k − i
if j = k then M′[i] := α

else M′[i] := son(α, T [j]) fi
3.4 if (α is root) ∧ (j = k) then

j := j + 1;
k := k + 1 fi

if (α is root) ∧ (j < k) then
j := j + 1 fi

if (α is not root) then
α := shift(α) fi

rof

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Lowest common ancestor (LCA) retrieval

Definition For nodes u, v of a rooted tree T, lca(u, v) is the
node furthest from the root that is an ancestor to both u and v.

Goal: constant time LCA retrieval after some preprocessing

Solution: Reduce the LCA problem to the range minimum
query (RMQ) problem.

Definition For an array A and indices i and j, rmqA(i, j) is the
index of the smallest element in the subarray A[i..j].

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Lowest common ancestor (LCA) retrieval

Definition For nodes u, v of a rooted tree T, lca(u, v) is the
node furthest from the root that is an ancestor to both u and v.

Goal: constant time LCA retrieval after some preprocessing

Solution: Reduce the LCA problem to the range minimum
query (RMQ) problem.

Definition For an array A and indices i and j, rmqA(i, j) is the
index of the smallest element in the subarray A[i..j].

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Lowest common ancestor (LCA) retrieval

Definition For nodes u, v of a rooted tree T, lca(u, v) is the
node furthest from the root that is an ancestor to both u and v.

Goal: constant time LCA retrieval after some preprocessing

Solution: Reduce the LCA problem to the range minimum
query (RMQ) problem.

Definition For an array A and indices i and j, rmqA(i, j) is the
index of the smallest element in the subarray A[i..j].

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Lowest common ancestor (LCA) retrieval

Definition For nodes u, v of a rooted tree T, lca(u, v) is the
node furthest from the root that is an ancestor to both u and v.

Goal: constant time LCA retrieval after some preprocessing

Solution: Reduce the LCA problem to the range minimum
query (RMQ) problem.

Definition For an array A and indices i and j, rmqA(i, j) is the
index of the smallest element in the subarray A[i..j].

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

If an algorithm has preprocessing time p(n) and query time q(n),
we say it has complexity 〈p(n), q(n)〉.

Lemma If there is a 〈p(n), q(n)〉-time solution for RMQ on a
length n array, then there is a
〈O(n) + p(2n− 1),O(1) + q(2n− 1)〉-time solution for LCA in a
tree with n nodes.

The O(n) term will come from the time needed to create the
soon-to-be-presented arrays.
The O(1) term will come from the time needed to convert the
RMQ answer on one of these arrays to the LCA answer in the tree.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

If an algorithm has preprocessing time p(n) and query time q(n),
we say it has complexity 〈p(n), q(n)〉.

Lemma If there is a 〈p(n), q(n)〉-time solution for RMQ on a
length n array, then there is a
〈O(n) + p(2n− 1),O(1) + q(2n− 1)〉-time solution for LCA in a
tree with n nodes.

The O(n) term will come from the time needed to create the
soon-to-be-presented arrays.
The O(1) term will come from the time needed to convert the
RMQ answer on one of these arrays to the LCA answer in the tree.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

If an algorithm has preprocessing time p(n) and query time q(n),
we say it has complexity 〈p(n), q(n)〉.

Lemma If there is a 〈p(n), q(n)〉-time solution for RMQ on a
length n array, then there is a
〈O(n) + p(2n− 1),O(1) + q(2n− 1)〉-time solution for LCA in a
tree with n nodes.

The O(n) term will come from the time needed to create the
soon-to-be-presented arrays.
The O(1) term will come from the time needed to convert the
RMQ answer on one of these arrays to the LCA answer in the tree.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Proof The LCA of nodes u and v is the shallowest (i.e. closest
to the root) node between the visits to u and v encountered during
a depth first search (DFS) traversal of T (n nodes; labels: 1, ..., n).
Therefore, the reduction proceeds as follows:

1 Let array D[1..2n− 1] store the nodes visited in a DFS of T.
D[i] is the label on the i-th node visited in the DFS.

2 Let the level of a node be its distance from the root.
Compute the level array L[1..2n− 1], where L[i] is the level of
node D[i].

3 Let the representative of a node be the index of its first
occurrence in the DFS. Compute the representative array
R[1..n], where R[w] = min{j | D[j] = w}.

Feasible during a single DFS; thus running time O(n).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Proof The LCA of nodes u and v is the shallowest (i.e. closest
to the root) node between the visits to u and v encountered during
a depth first search (DFS) traversal of T (n nodes; labels: 1, ..., n).
Therefore, the reduction proceeds as follows:

1 Let array D[1..2n− 1] store the nodes visited in a DFS of T.
D[i] is the label on the i-th node visited in the DFS.

2 Let the level of a node be its distance from the root.
Compute the level array L[1..2n− 1], where L[i] is the level of
node D[i].

3 Let the representative of a node be the index of its first
occurrence in the DFS. Compute the representative array
R[1..n], where R[w] = min{j | D[j] = w}.

Feasible during a single DFS; thus running time O(n).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Proof The LCA of nodes u and v is the shallowest (i.e. closest
to the root) node between the visits to u and v encountered during
a depth first search (DFS) traversal of T (n nodes; labels: 1, ..., n).
Therefore, the reduction proceeds as follows:

1 Let array D[1..2n− 1] store the nodes visited in a DFS of T.
D[i] is the label on the i-th node visited in the DFS.

2 Let the level of a node be its distance from the root.
Compute the level array L[1..2n− 1], where L[i] is the level of
node D[i].

3 Let the representative of a node be the index of its first
occurrence in the DFS. Compute the representative array
R[1..n], where R[w] = min{j | D[j] = w}.

Feasible during a single DFS; thus running time O(n).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Proof The LCA of nodes u and v is the shallowest (i.e. closest
to the root) node between the visits to u and v encountered during
a depth first search (DFS) traversal of T (n nodes; labels: 1, ..., n).
Therefore, the reduction proceeds as follows:

1 Let array D[1..2n− 1] store the nodes visited in a DFS of T.
D[i] is the label on the i-th node visited in the DFS.

2 Let the level of a node be its distance from the root.
Compute the level array L[1..2n− 1], where L[i] is the level of
node D[i].

3 Let the representative of a node be the index of its first
occurrence in the DFS. Compute the representative array
R[1..n], where R[w] = min{j | D[j] = w}.

Feasible during a single DFS; thus running time O(n).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Proof The LCA of nodes u and v is the shallowest (i.e. closest
to the root) node between the visits to u and v encountered during
a depth first search (DFS) traversal of T (n nodes; labels: 1, ..., n).
Therefore, the reduction proceeds as follows:

1 Let array D[1..2n− 1] store the nodes visited in a DFS of T.
D[i] is the label on the i-th node visited in the DFS.

2 Let the level of a node be its distance from the root.
Compute the level array L[1..2n− 1], where L[i] is the level of
node D[i].

3 Let the representative of a node be the index of its first
occurrence in the DFS. Compute the representative array
R[1..n], where R[w] = min{j | D[j] = w}.

Feasible during a single DFS; thus running time O(n).

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

LCA computed as follows (suppose u is visited before v):

Nodes between the first visits to u and v: D[R[u]..R[v]]

Shallowest node in this subtour at index rmqL(R[u],R[v])

Node at this position and thus output of lca(u, v):
D[rmqL(R[u],R[v])]

Time complexity as claimed in the lemma:

Just L (size 2n− 1) must be proprocessed for RMQ. Total
preprocessing: O(n) + p(2n− 1)

For the query: one RMQ in L and three constant time array
lookups. In total: O(1) + q(2n− 1). �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

LCA computed as follows (suppose u is visited before v):

Nodes between the first visits to u and v: D[R[u]..R[v]]

Shallowest node in this subtour at index rmqL(R[u],R[v])

Node at this position and thus output of lca(u, v):
D[rmqL(R[u],R[v])]

Time complexity as claimed in the lemma:

Just L (size 2n− 1) must be proprocessed for RMQ. Total
preprocessing: O(n) + p(2n− 1)

For the query: one RMQ in L and three constant time array
lookups. In total: O(1) + q(2n− 1). �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

LCA computed as follows (suppose u is visited before v):

Nodes between the first visits to u and v: D[R[u]..R[v]]

Shallowest node in this subtour at index rmqL(R[u],R[v])

Node at this position and thus output of lca(u, v):
D[rmqL(R[u],R[v])]

Time complexity as claimed in the lemma:

Just L (size 2n− 1) must be proprocessed for RMQ. Total
preprocessing: O(n) + p(2n− 1)

For the query: one RMQ in L and three constant time array
lookups. In total: O(1) + q(2n− 1). �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

LCA computed as follows (suppose u is visited before v):

Nodes between the first visits to u and v: D[R[u]..R[v]]

Shallowest node in this subtour at index rmqL(R[u],R[v])

Node at this position and thus output of lca(u, v):
D[rmqL(R[u],R[v])]

Time complexity as claimed in the lemma:

Just L (size 2n− 1) must be proprocessed for RMQ. Total
preprocessing: O(n) + p(2n− 1)

For the query: one RMQ in L and three constant time array
lookups. In total: O(1) + q(2n− 1). �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

LCA computed as follows (suppose u is visited before v):

Nodes between the first visits to u and v: D[R[u]..R[v]]

Shallowest node in this subtour at index rmqL(R[u],R[v])

Node at this position and thus output of lca(u, v):
D[rmqL(R[u],R[v])]

Time complexity as claimed in the lemma:

Just L (size 2n− 1) must be proprocessed for RMQ. Total
preprocessing: O(n) + p(2n− 1)

For the query: one RMQ in L and three constant time array
lookups. In total: O(1) + q(2n− 1). �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

What about RMQ’s complexity?

After procomputing (at least a crucial part of) all possible
queries, lookup time q(n) = O(1).
Preprocessing time p(n) =

O(n3) – Brute force: For all possible index pairs, search the
minimum.
O(n2) – Still naive: Fill the table by dynamic programming.
O(n log n) – Better: Precompute only queries for blocks of a
power-of-two length; remaining answers may be inferred in
constant time at the moment of query.
O(n) – Really clever: Make use of the fact that adjacent
elements in L differ by exactly ±1; precompute only solutions
for the few generic ±1-patterns.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

What about RMQ’s complexity?

After procomputing (at least a crucial part of) all possible
queries, lookup time q(n) = O(1).
Preprocessing time p(n) =

O(n3) – Brute force: For all possible index pairs, search the
minimum.
O(n2) – Still naive: Fill the table by dynamic programming.
O(n log n) – Better: Precompute only queries for blocks of a
power-of-two length; remaining answers may be inferred in
constant time at the moment of query.
O(n) – Really clever: Make use of the fact that adjacent
elements in L differ by exactly ±1; precompute only solutions
for the few generic ±1-patterns.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

What about RMQ’s complexity?

After procomputing (at least a crucial part of) all possible
queries, lookup time q(n) = O(1).
Preprocessing time p(n) =

O(n3) – Brute force: For all possible index pairs, search the
minimum.
O(n2) – Still naive: Fill the table by dynamic programming.
O(n log n) – Better: Precompute only queries for blocks of a
power-of-two length; remaining answers may be inferred in
constant time at the moment of query.
O(n) – Really clever: Make use of the fact that adjacent
elements in L differ by exactly ±1; precompute only solutions
for the few generic ±1-patterns.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

What about RMQ’s complexity?

After procomputing (at least a crucial part of) all possible
queries, lookup time q(n) = O(1).
Preprocessing time p(n) =

O(n3) – Brute force: For all possible index pairs, search the
minimum.
O(n2) – Still naive: Fill the table by dynamic programming.
O(n log n) – Better: Precompute only queries for blocks of a
power-of-two length; remaining answers may be inferred in
constant time at the moment of query.
O(n) – Really clever: Make use of the fact that adjacent
elements in L differ by exactly ±1; precompute only solutions
for the few generic ±1-patterns.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

What about RMQ’s complexity?

After procomputing (at least a crucial part of) all possible
queries, lookup time q(n) = O(1).
Preprocessing time p(n) =

O(n3) – Brute force: For all possible index pairs, search the
minimum.
O(n2) – Still naive: Fill the table by dynamic programming.
O(n log n) – Better: Precompute only queries for blocks of a
power-of-two length; remaining answers may be inferred in
constant time at the moment of query.
O(n) – Really clever: Make use of the fact that adjacent
elements in L differ by exactly ±1; precompute only solutions
for the few generic ±1-patterns.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Edit distance

Definition The edit distance (or Levenshtein distance) between
two strings S1 and S2 is the minimum number of edit operations
(insertions, deletions, substitutions) needed to transform S1 into
S2.

Such a transformation may be coded in an edit transcript, i.e. a
string over the alphabet {I,D, S,M}, meaning “insertion”,
“deletion”, “substitution” or “match” respectively.

Example RIMDMDMMI
v intner = S1

wri t ers = S2

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Edit distance

Definition The edit distance (or Levenshtein distance) between
two strings S1 and S2 is the minimum number of edit operations
(insertions, deletions, substitutions) needed to transform S1 into
S2.

Such a transformation may be coded in an edit transcript, i.e. a
string over the alphabet {I,D, S,M}, meaning “insertion”,
“deletion”, “substitution” or “match” respectively.

Example RIMDMDMMI
v intner = S1

wri t ers = S2

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Edit distance

Definition The edit distance (or Levenshtein distance) between
two strings S1 and S2 is the minimum number of edit operations
(insertions, deletions, substitutions) needed to transform S1 into
S2.

Such a transformation may be coded in an edit transcript, i.e. a
string over the alphabet {I,D, S,M}, meaning “insertion”,
“deletion”, “substitution” or “match” respectively.

Example RIMDMDMMI
v intner = S1

wri t ers = S2

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Computing the edit distance

Lemma The edit distance is computable using dynamic
programming:

Build the table E where E[i, j] denotes the edit distance
between S1[1..i] and S2[1..j].

Base conditions: E[i, 0] = i (all deletions); E[0, j] = j (all
insertions)

Recurrence:
E[i, j] = min{E[i, j−1]+1,E[i−1, j]+1,E[i−1, j−1]+Iij},
where Iij = 0, if S1[i] = S2[j], and Iij = 1 otherwise.

Proof The last letter of an optimal transcript is one of
{I, D, S,M}. The recurrence selects the minimum of these
possibilities. �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Computing the edit distance

Lemma The edit distance is computable using dynamic
programming:

Build the table E where E[i, j] denotes the edit distance
between S1[1..i] and S2[1..j].

Base conditions: E[i, 0] = i (all deletions); E[0, j] = j (all
insertions)

Recurrence:
E[i, j] = min{E[i, j−1]+1,E[i−1, j]+1,E[i−1, j−1]+Iij},
where Iij = 0, if S1[i] = S2[j], and Iij = 1 otherwise.

Proof The last letter of an optimal transcript is one of
{I, D, S,M}. The recurrence selects the minimum of these
possibilities. �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Computing the edit distance

Lemma The edit distance is computable using dynamic
programming:

Build the table E where E[i, j] denotes the edit distance
between S1[1..i] and S2[1..j].

Base conditions: E[i, 0] = i (all deletions); E[0, j] = j (all
insertions)

Recurrence:
E[i, j] = min{E[i, j−1]+1,E[i−1, j]+1,E[i−1, j−1]+Iij},
where Iij = 0, if S1[i] = S2[j], and Iij = 1 otherwise.

Proof The last letter of an optimal transcript is one of
{I, D, S,M}. The recurrence selects the minimum of these
possibilities. �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Computing the edit distance

Lemma The edit distance is computable using dynamic
programming:

Build the table E where E[i, j] denotes the edit distance
between S1[1..i] and S2[1..j].

Base conditions: E[i, 0] = i (all deletions); E[0, j] = j (all
insertions)

Recurrence:
E[i, j] = min{E[i, j−1]+1,E[i−1, j]+1,E[i−1, j−1]+Iij},
where Iij = 0, if S1[i] = S2[j], and Iij = 1 otherwise.

Proof The last letter of an optimal transcript is one of
{I, D, S,M}. The recurrence selects the minimum of these
possibilities. �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Computing the edit distance

Lemma The edit distance is computable using dynamic
programming:

Build the table E where E[i, j] denotes the edit distance
between S1[1..i] and S2[1..j].

Base conditions: E[i, 0] = i (all deletions); E[0, j] = j (all
insertions)

Recurrence:
E[i, j] = min{E[i, j−1]+1,E[i−1, j]+1,E[i−1, j−1]+Iij},
where Iij = 0, if S1[i] = S2[j], and Iij = 1 otherwise.

Proof The last letter of an optimal transcript is one of
{I,D, S,M}. The recurrence selects the minimum of these
possibilities. �

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Filling up the table row by row

E[i, j] S2 w r i t e r s

S1 0 1 2 3 4 5 6 7

0 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7

v 1 ↑ 1 ↖ 1 ↖← 2 ↖←3 ↖←4 ↖←5 ↖←6 ↖←7

i 2 ↑ 2 ↖←2 ↖ 2 ↖ 2 *

n 3 ↑ 3

t 4 ↑ 4

n 5 ↑ 5

e 6 ↑ 6

r 7 ↑ 7

Complexity: O(|S1| · |S2|)
Note (no proof here): Diagonals are non-decreasing and differ
by at most one.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Filling up the table row by row

E[i, j] S2 w r i t e r s

S1 0 1 2 3 4 5 6 7

0 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7

v 1 ↑ 1 ↖ 1 ↖← 2 ↖←3 ↖←4 ↖←5 ↖←6 ↖←7

i 2 ↑ 2 ↖←2 ↖ 2 ↖ 2 *

n 3 ↑ 3

t 4 ↑ 4

n 5 ↑ 5

e 6 ↑ 6

r 7 ↑ 7

Complexity: O(|S1| · |S2|)
Note (no proof here): Diagonals are non-decreasing and differ
by at most one.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Filling up the table row by row

E[i, j] S2 w r i t e r s

S1 0 1 2 3 4 5 6 7

0 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7

v 1 ↑ 1 ↖ 1 ↖← 2 ↖←3 ↖←4 ↖←5 ↖←6 ↖←7

i 2 ↑ 2 ↖←2 ↖ 2 ↖ 2 *

n 3 ↑ 3

t 4 ↑ 4

n 5 ↑ 5

e 6 ↑ 6

r 7 ↑ 7

Complexity: O(|S1| · |S2|)
Note (no proof here): Diagonals are non-decreasing and differ
by at most one.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

We want some slightly different thing ...

We need the minimum number of operations to transform
P [1..m] so that it occurs in T [1..n], not that it actually is T ;
i.e. we want starting spaces to be “free”.

Compute table D, where

D[i, j] := min
1≤l≤j

{edit distance between P [1..i] and T [l..j]}

Achieved by changing the base conditions: D[i, 0] = i (as
before: all deletions); D[0, j] = 0 (λ ends anywhere)

There is a match if row m is reached and if the value there
is ≤ k.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

We want some slightly different thing ...

We need the minimum number of operations to transform
P [1..m] so that it occurs in T [1..n], not that it actually is T ;
i.e. we want starting spaces to be “free”.

Compute table D, where

D[i, j] := min
1≤l≤j

{edit distance between P [1..i] and T [l..j]}

Achieved by changing the base conditions: D[i, 0] = i (as
before: all deletions); D[0, j] = 0 (λ ends anywhere)

There is a match if row m is reached and if the value there
is ≤ k.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

We want some slightly different thing ...

We need the minimum number of operations to transform
P [1..m] so that it occurs in T [1..n], not that it actually is T ;
i.e. we want starting spaces to be “free”.

Compute table D, where

D[i, j] := min
1≤l≤j

{edit distance between P [1..i] and T [l..j]}

Achieved by changing the base conditions: D[i, 0] = i (as
before: all deletions); D[0, j] = 0 (λ ends anywhere)

There is a match if row m is reached and if the value there
is ≤ k.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

We want some slightly different thing ...

We need the minimum number of operations to transform
P [1..m] so that it occurs in T [1..n], not that it actually is T ;
i.e. we want starting spaces to be “free”.

Compute table D, where

D[i, j] := min
1≤l≤j

{edit distance between P [1..i] and T [l..j]}

Achieved by changing the base conditions: D[i, 0] = i (as
before: all deletions); D[0, j] = 0 (λ ends anywhere)

There is a match if row m is reached and if the value there
is ≤ k.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Reducing the complexity ...

... from O(mn) to O(kn) using the Landau–Vishkin
algorithm (LV)

Call cell D[i, j] an entry of diagonal j − i (range: −m, ..., n).

Do not compute D but, column by column, the
(k + 1)× (n + 1) “meta table” L where L[x, y] is the row
number of the last (i.e. deepest) x along diagonal y − x.

−k ≤ y − x ≤ n, so all relevant diagonals and thus solutions
represented because D[k + 1, 0] = k + 1 > k and diagonals
are non-decreasing.

Solution if row m is reached in D, i.e. if L[x, y] = m; then
there is a match ending at position m + y − x with x
differences.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Reducing the complexity ...

... from O(mn) to O(kn) using the Landau–Vishkin
algorithm (LV)

Call cell D[i, j] an entry of diagonal j − i (range: −m, ..., n).

Do not compute D but, column by column, the
(k + 1)× (n + 1) “meta table” L where L[x, y] is the row
number of the last (i.e. deepest) x along diagonal y − x.

−k ≤ y − x ≤ n, so all relevant diagonals and thus solutions
represented because D[k + 1, 0] = k + 1 > k and diagonals
are non-decreasing.

Solution if row m is reached in D, i.e. if L[x, y] = m; then
there is a match ending at position m + y − x with x
differences.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Reducing the complexity ...

... from O(mn) to O(kn) using the Landau–Vishkin
algorithm (LV)

Call cell D[i, j] an entry of diagonal j − i (range: −m, ..., n).

Do not compute D but, column by column, the
(k + 1)× (n + 1) “meta table” L where L[x, y] is the row
number of the last (i.e. deepest) x along diagonal y − x.

−k ≤ y − x ≤ n, so all relevant diagonals and thus solutions
represented because D[k + 1, 0] = k + 1 > k and diagonals
are non-decreasing.

Solution if row m is reached in D, i.e. if L[x, y] = m; then
there is a match ending at position m + y − x with x
differences.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Reducing the complexity ...

... from O(mn) to O(kn) using the Landau–Vishkin
algorithm (LV)

Call cell D[i, j] an entry of diagonal j − i (range: −m, ..., n).

Do not compute D but, column by column, the
(k + 1)× (n + 1) “meta table” L where L[x, y] is the row
number of the last (i.e. deepest) x along diagonal y − x.

−k ≤ y − x ≤ n, so all relevant diagonals and thus solutions
represented because D[k + 1, 0] = k + 1 > k and diagonals
are non-decreasing.

Solution if row m is reached in D, i.e. if L[x, y] = m; then
there is a match ending at position m + y − x with x
differences.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Reducing the complexity ...

... from O(mn) to O(kn) using the Landau–Vishkin
algorithm (LV)

Call cell D[i, j] an entry of diagonal j − i (range: −m, ..., n).

Do not compute D but, column by column, the
(k + 1)× (n + 1) “meta table” L where L[x, y] is the row
number of the last (i.e. deepest) x along diagonal y − x.

−k ≤ y − x ≤ n, so all relevant diagonals and thus solutions
represented because D[k + 1, 0] = k + 1 > k and diagonals
are non-decreasing.

Solution if row m is reached in D, i.e. if L[x, y] = m; then
there is a match ending at position m + y − x with x
differences.

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

How is L computed?

Define L[x,−1] = L[x,−2] := −∞ because every cell of
diagonal −1− x is at least D[x + 1, 0] = x + 1 > x.

Fill row 0: L[0, y] = jump(1, y + 1), where jump(i, j) is the
longest common prefix of P [i..m] and T [j..n], i.e.
jump(i, j) =
min{Mj , length of word lca(M ′

j , leaf P$[i..m])}

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

How is L computed?

Define L[x,−1] = L[x,−2] := −∞ because every cell of
diagonal −1− x is at least D[x + 1, 0] = x + 1 > x.

Fill row 0: L[0, y] = jump(1, y + 1), where jump(i, j) is the
longest common prefix of P [i..m] and T [j..n], i.e.
jump(i, j) =
min{Mj , length of word lca(M ′

j , leaf P$[i..m])}

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Some part of L:
y →

x α β γ
↓ L[x, y]

α := L[x− 1, y − 2] (last x− 1 on diagonal y − x− 1)
← insert T [α + y − x] after P [α]

β := L[x− 1, y − 1] (last x− 1 on diagonal y − x)
↖ substitute T [β + 1 + y − x] after P [β + 1]

γ := L[x− 1, y] (last x− 1 on diagonal y − x + 1)
↑ delete P [γ + 1]

t := max{α, β + 1, γ + 1}
L[x, y] = t + jump(t + 1, t + 1 + y − x)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Some part of L:
y →

x α β γ
↓ L[x, y]

α := L[x− 1, y − 2] (last x− 1 on diagonal y − x− 1)
← insert T [α + y − x] after P [α]

β := L[x− 1, y − 1] (last x− 1 on diagonal y − x)
↖ substitute T [β + 1 + y − x] after P [β + 1]

γ := L[x− 1, y] (last x− 1 on diagonal y − x + 1)
↑ delete P [γ + 1]

t := max{α, β + 1, γ + 1}
L[x, y] = t + jump(t + 1, t + 1 + y − x)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Some part of L:
y →

x α β γ
↓ L[x, y]

α := L[x− 1, y − 2] (last x− 1 on diagonal y − x− 1)
← insert T [α + y − x] after P [α]

β := L[x− 1, y − 1] (last x− 1 on diagonal y − x)
↖ substitute T [β + 1 + y − x] after P [β + 1]

γ := L[x− 1, y] (last x− 1 on diagonal y − x + 1)
↑ delete P [γ + 1]

t := max{α, β + 1, γ + 1}
L[x, y] = t + jump(t + 1, t + 1 + y − x)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Some part of L:
y →

x α β γ
↓ L[x, y]

α := L[x− 1, y − 2] (last x− 1 on diagonal y − x− 1)
← insert T [α + y − x] after P [α]

β := L[x− 1, y − 1] (last x− 1 on diagonal y − x)
↖ substitute T [β + 1 + y − x] after P [β + 1]

γ := L[x− 1, y] (last x− 1 on diagonal y − x + 1)
↑ delete P [γ + 1]

t := max{α, β + 1, γ + 1}
L[x, y] = t + jump(t + 1, t + 1 + y − x)

Robert Z. West Sublinear Approximate String Matching

The Auxiliary Tools

Suffix Trees
Matching Statistics
Lowest Common Ancestor
Edit Distance

Now I’m hungry!
Let’s go over to ...

Robert Z. West Sublinear Approximate String Matching

The Algorithm

Part II

Cooking the Meal

The Algorithm

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Linear expected time

Conditions:

1 T [1..n] is a uniformly random string over a b-letter alphabet.

2 Number of differences allowed in a match is

k < k∗ =
m

logb m + c1
− c2.

(constants ci to be specified later; m: pattern length)

Pattern P need not be random.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Linear expected time

Conditions:

1 T [1..n] is a uniformly random string over a b-letter alphabet.

2 Number of differences allowed in a match is

k < k∗ =
m

logb m + c1
− c2.

(constants ci to be specified later; m: pattern length)

Pattern P need not be random.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Linear expected time

Conditions:

1 T [1..n] is a uniformly random string over a b-letter alphabet.

2 Number of differences allowed in a match is

k < k∗ =
m

logb m + c1
− c2.

(constants ci to be specified later; m: pattern length)

Pattern P need not be random.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

The Chang–Lawler algorithm (CL)

s1 := 1; j := 1
do

sj+1 := sj + M[sj] + 1; // compute the start “positions”
j := j + 1

until sj > n
jmax := j − 1
for j := 1 to jmax do

if (j + k + 2 ≤ jmax) ∧ (sj+k+2 − sj ≤ m− k) then
apply LV to T [sj ..sj+k+2 − 1] fi // “work at sj”

rof

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Why does it work?

If T [p..p + d− 1] matches P and sj ≤ p ≤ sj+1, then this
string can be written in the form ζ1x1ζ2x2...ζk+1xk+1, where
each xl is a letter or empty, and each ζl is a substring of P .

Show by induction that, for every 0 ≤ l ≤ k + 1,
sj+l+1 ≥ p + length(ζ1x1...ζlxl). (If you can’t live without
having seen it, tell me ...)

So in particular sj+k+2 ≥ p + d, which implies
sj+k+2 − sj ≥ d ≥ m− k.

So CL will perform work at start position sj and thereby
detect there is a match ending at position p + d− 1. �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Why does it work?

If T [p..p + d− 1] matches P and sj ≤ p ≤ sj+1, then this
string can be written in the form ζ1x1ζ2x2...ζk+1xk+1, where
each xl is a letter or empty, and each ζl is a substring of P .

Show by induction that, for every 0 ≤ l ≤ k + 1,
sj+l+1 ≥ p + length(ζ1x1...ζlxl). (If you can’t live without
having seen it, tell me ...)

So in particular sj+k+2 ≥ p + d, which implies
sj+k+2 − sj ≥ d ≥ m− k.

So CL will perform work at start position sj and thereby
detect there is a match ending at position p + d− 1. �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Why does it work?

If T [p..p + d− 1] matches P and sj ≤ p ≤ sj+1, then this
string can be written in the form ζ1x1ζ2x2...ζk+1xk+1, where
each xl is a letter or empty, and each ζl is a substring of P .

Show by induction that, for every 0 ≤ l ≤ k + 1,
sj+l+1 ≥ p + length(ζ1x1...ζlxl). (If you can’t live without
having seen it, tell me ...)

So in particular sj+k+2 ≥ p + d, which implies
sj+k+2 − sj ≥ d ≥ m− k.

So CL will perform work at start position sj and thereby
detect there is a match ending at position p + d− 1. �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Why does it work?

If T [p..p + d− 1] matches P and sj ≤ p ≤ sj+1, then this
string can be written in the form ζ1x1ζ2x2...ζk+1xk+1, where
each xl is a letter or empty, and each ζl is a substring of P .

Show by induction that, for every 0 ≤ l ≤ k + 1,
sj+l+1 ≥ p + length(ζ1x1...ζlxl). (If you can’t live without
having seen it, tell me ...)

So in particular sj+k+2 ≥ p + d, which implies
sj+k+2 − sj ≥ d ≥ m− k.

So CL will perform work at start position sj and thereby
detect there is a match ending at position p + d− 1. �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s guess what time it is ...

If we can show the probability to perform work at s1 is small,
this will be true for all sj ’s because they are all stochastically
independent and equally distributed (because knowledge of all
the letters before sj is of no use when “guessing” sj+1).

sk∗+3 − s1 ≥ sk+3 − s1; m− k ≥ m− k∗

Thus the event sk+3 − s1 ≥ m− k implies the event
sk∗+3 − s1 ≥ m− k∗.

So Pr[sk∗+3 − s1 ≥ m− k∗] ≥ Pr[sk+3 − s1 ≥ m− k] and it
suffices to prove the following lemma.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s guess what time it is ...

If we can show the probability to perform work at s1 is small,
this will be true for all sj ’s because they are all stochastically
independent and equally distributed (because knowledge of all
the letters before sj is of no use when “guessing” sj+1).

sk∗+3 − s1 ≥ sk+3 − s1; m− k ≥ m− k∗

Thus the event sk+3 − s1 ≥ m− k implies the event
sk∗+3 − s1 ≥ m− k∗.

So Pr[sk∗+3 − s1 ≥ m− k∗] ≥ Pr[sk+3 − s1 ≥ m− k] and it
suffices to prove the following lemma.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s guess what time it is ...

If we can show the probability to perform work at s1 is small,
this will be true for all sj ’s because they are all stochastically
independent and equally distributed (because knowledge of all
the letters before sj is of no use when “guessing” sj+1).

sk∗+3 − s1 ≥ sk+3 − s1; m− k ≥ m− k∗

Thus the event sk+3 − s1 ≥ m− k implies the event
sk∗+3 − s1 ≥ m− k∗.

So Pr[sk∗+3 − s1 ≥ m− k∗] ≥ Pr[sk+3 − s1 ≥ m− k] and it
suffices to prove the following lemma.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s guess what time it is ...

If we can show the probability to perform work at s1 is small,
this will be true for all sj ’s because they are all stochastically
independent and equally distributed (because knowledge of all
the letters before sj is of no use when “guessing” sj+1).

sk∗+3 − s1 ≥ sk+3 − s1; m− k ≥ m− k∗

Thus the event sk+3 − s1 ≥ m− k implies the event
sk∗+3 − s1 ≥ m− k∗.

So Pr[sk∗+3 − s1 ≥ m− k∗] ≥ Pr[sk+3 − s1 ≥ m− k] and it
suffices to prove the following lemma.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Lemma For suitably chosen constants c1 and c2, and
k∗ = m

logb m+c1
− c2, Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof For the sake of easiness, let us assume (i) b = 2 (b > 2
gives slightly smaller ci’s) and (ii) k∗ and log m are integers
(log m := log2 m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... + Xk∗+2 (telescope sum).

There are m2d different strings of length log m + d, but at
most m such substrings of P .

Note that X1 = M[1] + 1.

So

Pr[X1 = log m + d + 1] < 2−d for all integer d ≥ 0 (1)

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

E[Xj] = E[X1] < log m + 3 after a few estimations.

Let Yi := Xi − m−k∗

k∗+2 .

Apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all
h > 0 (t > 0):

Pr[X1 + ... + Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]
= Pr[et(Y1+...+Yk∗+2) ≥ et·0]
≤ E[et(Y1+...+Yk∗+2)]/1
= E[etY1 · ... · etYk∗+2]
= E[etY1] · ... ·E[etYk∗+2]
= E[etY1]k

∗+2

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Inequality (1): Pr[X1 = log m + d + 1] < 2−d, is equivalent to

Pr[Y1 = log m+d+1− m− k∗

k∗ + 2
] < 2−d for all integer d ≥ 0

So, the theorem of total expectation implies, for all t > 0
(α := log m + 1− m−k∗

k∗+2),

E[etY1] = E[etY1 |Y1 ≤ α] · Pr[Y1 ≤ α]︸ ︷︷ ︸
≤1

+

+
∞∑

d=1

E[etY1 |Y1 = α + d] · Pr[Y1 = α + d]

≤ etα +
∞∑

d=1

et(α+d) · Pr[Y1 = α + d]

<
∞∑

d=0

et(α+d) · 2−d

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Inequality (1): Pr[X1 = log m + d + 1] < 2−d, is equivalent to

Pr[Y1 = log m+d+1− m− k∗

k∗ + 2
] < 2−d for all integer d ≥ 0

So, the theorem of total expectation implies, for all t > 0
(α := log m + 1− m−k∗

k∗+2),

E[etY1] = E[etY1 |Y1 ≤ α] · Pr[Y1 ≤ α]︸ ︷︷ ︸
≤1

+

+
∞∑

d=1

E[etY1 |Y1 = α + d] · Pr[Y1 = α + d]

≤ etα +
∞∑

d=1

et(α+d) · Pr[Y1 = α + d]

<
∞∑

d=0

et(α+d) · 2−d

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Inequality (1): Pr[X1 = log m + d + 1] < 2−d, is equivalent to

Pr[Y1 = log m+d+1− m− k∗

k∗ + 2
] < 2−d for all integer d ≥ 0

So, the theorem of total expectation implies, for all t > 0
(α := log m + 1− m−k∗

k∗+2),

E[etY1] = E[etY1 |Y1 ≤ α] · Pr[Y1 ≤ α]︸ ︷︷ ︸
≤1

+

+
∞∑

d=1

E[etY1 |Y1 = α + d] · Pr[Y1 = α + d]

≤ etα +
∞∑

d=1

et(α+d) · Pr[Y1 = α + d]

<
∞∑

d=0

et(α+d) · 2−d

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Inequality (1): Pr[X1 = log m + d + 1] < 2−d, is equivalent to

Pr[Y1 = log m+d+1− m− k∗

k∗ + 2
] < 2−d for all integer d ≥ 0

So, the theorem of total expectation implies, for all t > 0
(α := log m + 1− m−k∗

k∗+2),

E[etY1] = E[etY1 |Y1 ≤ α] · Pr[Y1 ≤ α]︸ ︷︷ ︸
≤1

+

+
∞∑

d=1

E[etY1 |Y1 = α + d] · Pr[Y1 = α + d]

≤ etα +
∞∑

d=1

et(α+d) · Pr[Y1 = α + d]

<
∞∑

d=0

et(α+d) · 2−d

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Homework Choose t = loge 2
2 , do some algebra, and verify that

the following is true for the probability to perform work at position
s1 and thus at each position:

Pr[sk∗+3 − s1 ≥ m− k∗] ≤ E[etY1]k
∗+2

< (
∞∑

d=0

et(α+d) · 2−d)k∗+2

<! 1/m3,

if c1 = 5.6 and c2 = 8.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

So what time is it?

LV is applied with a probability of less than 1/m3, the text it is
applied to is supposed to have length
(k + 2)E[X1] < (k + 2)(log m + 3) = O(k log m), and LV has
complexity O(kl), if l is the length of the input string.
Also recall that k = O(m

log m).
So the average expected work for any start position sj is

m−3O(k2 log m) = m−3O(
m2

(log m)2
log m)

= O(
1

m log m
)

= O(λn.λm.1)

Hence the total expected work is O(n). �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

So what time is it?

LV is applied with a probability of less than 1/m3, the text it is
applied to is supposed to have length
(k + 2)E[X1] < (k + 2)(log m + 3) = O(k log m), and LV has
complexity O(kl), if l is the length of the input string.
Also recall that k = O(m

log m).
So the average expected work for any start position sj is

m−3O(k2 log m) = m−3O(
m2

(log m)2
log m)

= O(
1

m log m
)

= O(λn.λm.1)

Hence the total expected work is O(n). �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

So what time is it?

LV is applied with a probability of less than 1/m3, the text it is
applied to is supposed to have length
(k + 2)E[X1] < (k + 2)(log m + 3) = O(k log m), and LV has
complexity O(kl), if l is the length of the input string.
Also recall that k = O(m

log m).
So the average expected work for any start position sj is

m−3O(k2 log m) = m−3O(
m2

(log m)2
log m)

= O(
1

m log m
)

= O(λn.λm.1)

Hence the total expected work is O(n). �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

So what time is it?

LV is applied with a probability of less than 1/m3, the text it is
applied to is supposed to have length
(k + 2)E[X1] < (k + 2)(log m + 3) = O(k log m), and LV has
complexity O(kl), if l is the length of the input string.
Also recall that k = O(m

log m).
So the average expected work for any start position sj is

m−3O(k2 log m) = m−3O(
m2

(log m)2
log m)

= O(
1

m log m
)

= O(λn.λm.1)

Hence the total expected work is O(n). �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

So what time is it?

LV is applied with a probability of less than 1/m3, the text it is
applied to is supposed to have length
(k + 2)E[X1] < (k + 2)(log m + 3) = O(k log m), and LV has
complexity O(kl), if l is the length of the input string.
Also recall that k = O(m

log m).
So the average expected work for any start position sj is

m−3O(k2 log m) = m−3O(
m2

(log m)2
log m)

= O(
1

m log m
)

= O(λn.λm.1)

Hence the total expected work is O(n). �

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s go beneath the line: SET
Now an algorithm is derived from LET that is sublinear in n (when
k < k∗/2− 3; k∗ as before).
The trick is:

Partition T into regions of length m−k
2 .

Any substring of T that matches P must contain the whole of
at least one region:

Starting from the left end of each region R, compute k + 1
“maximum jumps” (using M), say ending at position p.
If p is within R, there can be no match containing the whole
of R.
If p is beyond R, apply LV to a stretch of text beginning
m+3k

2 letters to the left of R and ending at p.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s go beneath the line: SET
Now an algorithm is derived from LET that is sublinear in n (when
k < k∗/2− 3; k∗ as before).
The trick is:

Partition T into regions of length m−k
2 .

Any substring of T that matches P must contain the whole of
at least one region:

Starting from the left end of each region R, compute k + 1
“maximum jumps” (using M), say ending at position p.
If p is within R, there can be no match containing the whole
of R.
If p is beyond R, apply LV to a stretch of text beginning
m+3k

2 letters to the left of R and ending at p.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s go beneath the line: SET
Now an algorithm is derived from LET that is sublinear in n (when
k < k∗/2− 3; k∗ as before).
The trick is:

Partition T into regions of length m−k
2 .

Any substring of T that matches P must contain the whole of
at least one region:

Starting from the left end of each region R, compute k + 1
“maximum jumps” (using M), say ending at position p.
If p is within R, there can be no match containing the whole
of R.
If p is beyond R, apply LV to a stretch of text beginning
m+3k

2 letters to the left of R and ending at p.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s go beneath the line: SET
Now an algorithm is derived from LET that is sublinear in n (when
k < k∗/2− 3; k∗ as before).
The trick is:

Partition T into regions of length m−k
2 .

Any substring of T that matches P must contain the whole of
at least one region:

Starting from the left end of each region R, compute k + 1
“maximum jumps” (using M), say ending at position p.
If p is within R, there can be no match containing the whole
of R.
If p is beyond R, apply LV to a stretch of text beginning
m+3k

2 letters to the left of R and ending at p.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

Let’s go beneath the line: SET
Now an algorithm is derived from LET that is sublinear in n (when
k < k∗/2− 3; k∗ as before).
The trick is:

Partition T into regions of length m−k
2 .

Any substring of T that matches P must contain the whole of
at least one region:

Starting from the left end of each region R, compute k + 1
“maximum jumps” (using M), say ending at position p.
If p is within R, there can be no match containing the whole
of R.
If p is beyond R, apply LV to a stretch of text beginning
m+3k

2 letters to the left of R and ending at p.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

A variation of the proof for LET yields that

Pr[p is beyond R] < 1/m3

So, similarly to the analysis of LET, the total expected work is:

m−3 2n

m− k︸ ︷︷ ︸
] regions

[(k + 1)(log m +O(1)) +O(m)]︸ ︷︷ ︸
exp. work at region examined

= ... = O(n/m3)

= o(n)

�

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

A variation of the proof for LET yields that

Pr[p is beyond R] < 1/m3

So, similarly to the analysis of LET, the total expected work is:

m−3 2n

m− k︸ ︷︷ ︸
] regions

[(k + 1)(log m +O(1)) +O(m)]︸ ︷︷ ︸
exp. work at region examined

= ... = O(n/m3)

= o(n)

�

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

A variation of the proof for LET yields that

Pr[p is beyond R] < 1/m3

So, similarly to the analysis of LET, the total expected work is:

m−3 2n

m− k︸ ︷︷ ︸
] regions

[(k + 1)(log m +O(1)) +O(m)]︸ ︷︷ ︸
exp. work at region examined

= ... = O(n/m3)

= o(n)

�

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

At last some practical notes

A combination of LET (for k ≥ k∗/2− 3) and SET (for
k < k∗/2− 3) runs in O(n

mk log m) expected time.

In a 16-letter alphabet, k∗ may be up to 25% of m, in a
64-letter alphabet even 35%.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

At last some practical notes

A combination of LET (for k ≥ k∗/2− 3) and SET (for
k < k∗/2− 3) runs in O(n

mk log m) expected time.

In a 16-letter alphabet, k∗ may be up to 25% of m, in a
64-letter alphabet even 35%.

Robert Z. West Sublinear Approximate String Matching

The Algorithm
Linear Expected Time
Sublinear Expected Time

The moral

Mind the preprocessing!

“Gut gekaut ist halb verdaut.”
“A good chewing is half the digestion.”

Robert Z. West Sublinear Approximate String Matching

	Outlines
	What?
	Why?
	How?

	The Auxiliary Tools
	Suffix Trees
	Matching Statistics
	Lowest Common Ancestor
	Edit Distance

	The Algorithm
	Linear Expected Time
	Sublinear Expected Time

